Welcome to emlearn’s documentation!
- emlearn
- User Guide
- 1. Getting started on PC (Linux/MacOS/Windows)
- 2. Getting started on hardware (Arduino)
- 3. Getting started on Zephyr RTOS
- 4. Getting started on browser (WASM/Emscripten)
- 5. Getting started with MicroPython
- 6. Platform support
- 7. Feature extraction
- 8. Classification
- 9. Regression
- 10. Anomaly Detection
- 11. Event Detection
- 12. Model optimization
- 13. Tree-based models
- Examples
- Python API
- 1. Model conversion
Model
convert()
- 2. Pareto-optimal evaluation
find_pareto_front()
is_pareto_efficient_simple()
plot_pareto_front()
- 3. Tree evaluation metrics
compute_cost_estimate()
count_trees()
get_tree_estimators()
model_size_bytes()
model_size_nodes()
tree_depth_average()
tree_depth_difference()
check_build_tools()
get_program_size()
parse_binutils_size_a_output()
run_binutils_size()
- 4. Utilities
compile_executable()
get_include_dir()
- 5. C code generation utilities
array_declare()
array_declare_fixedpoint()
assert_valid_identifier()
constant()
constant_declare()
identifier_is_reserved()
identifier_is_valid()
struct_declare()
struct_init()
- C API
- The MIT License