Feature data-type in tree-based models

Tree-based models in emlearn supports both float and integer datatypes for the feature datatype. This example illustrates how this can impact model size.

import os.path

import emlearn
import numpy
import pandas
import seaborn
import matplotlib.pyplot as plt

try:
    # When executed as regular .py script
    here = os.path.dirname(__file__)
except NameError:
    # When executed as Jupyter notebook / Sphinx Gallery
    here = os.getcwd()

Train a RandomForest model

Key thing is to transform the data into integers that fit the

from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import cross_val_score, StratifiedKFold

def train_model(data):

    label_column = 'label'
    feature_columns = list(set(data.columns) - set([label_column]))
    X = data[feature_columns]
    Y = data[label_column]

    # Rescale and convert to integers (quantize)
    # Here everything is made to fit in int8, the smallest representation
    # it may be needed to adapt to larger ones, such as uint16
    X = (MinMaxScaler().fit_transform(X) * 127).astype(int)

    model = RandomForestClassifier(n_estimators=10, max_depth=10, random_state=1)

    # sanity check performance
    cv = StratifiedKFold(5, random_state=None, shuffle=False)
    scores = cross_val_score(model, X, Y, cv=cv)
    assert numpy.mean(scores) >= 0.60, numpy.mean(scores)

    model.fit(X, Y)

    return model

from emlearn.examples.datasets.sonar import load_sonar_dataset

data = load_sonar_dataset()
model = train_model(data)

Measure how feature datatype impacts program size

We are testing here on the AVR8 platform, which has no floating point unit (FPU) Other platforms may show different results.

from emlearn.evaluate.size import get_program_size, check_build_tools

def check_program_size(dtype, model, platform, mcu):

    model_name = 'sizecheck'
    features_length = model.estimators_[0].n_features_in_
    model_enabled = 0 if dtype == 'no-model' else 1
    if dtype == 'loadable':
        dtype = 'float'
        method = 'loadable'
    else:
        method = 'inline'

    if model_enabled:
        # Quantize with the specified dtype
        c_model = emlearn.convert(model, dtype=dtype, method='loadable')
        model_code = c_model.save(name=model_name, inference=[method])

        if method == 'loadable':
            # XXX: the cast to float is wrong. Will crash horribly during execution
            # Only works for size estimation
            model_code += f"""
            int {model_name}_predict(const {dtype} *f, int l) {{
                return eml_trees_predict(&{model_name}, (float *)f, l);
            }}"""
    else:
        model_code = ""

    test_program = \
    f"""
    #include <stdint.h>

    #if {model_enabled}
    {model_code}

    static {dtype} features[{features_length}] = {{0, }};
    #endif

    int main()
    {{
        uint8_t pred = 0;
        #if {model_enabled}
        pred = {model_name}_predict(features, {features_length});
        #endif
        int out = pred;
        return out;
    }}
    """
    data = get_program_size(test_program, platform=platform, mcu=mcu)

    return pandas.Series(data)


def run_experiment(model, platform, mcu):

    results_file = os.path.join(here, f'trees-feature-quantization-{platform}+{mcu}.csv')
    # check if AVR build tools are present. If not, just load results from a file
    missing_tools = check_build_tools(platform)

    if missing_tools:
        print(f"WARNING: Compiler toolchain for platform '{platform}' not found. Loading cached results")
        results = pandas.read_csv(results_file)
    else:
        experiments = pandas.DataFrame({
            'dtype': ('no-model', 'loadable', 'float', 'int32_t', 'int16_t', 'int8_t', 'uint8_t'),
        })
        results = experiments['dtype'].apply(check_program_size, model=model, platform=platform, mcu=mcu)
        results = pandas.merge(experiments, results, left_index=True, right_index=True)
        results = results.set_index('dtype')
        # subtract overall program size to get only model size
        results = (results - results.loc['no-model'])
        results = results.drop(index='no-model')

        # add identifying information
        results['platform'] = platform
        results['cpu'] = mcu
        results = results.reset_index().set_index(['platform', 'cpu', 'dtype'])

        results.to_csv(results_file)
        print("Ran experiments. Results written to", results_file)

    return results


platforms = pandas.DataFrame.from_records([
    ('avr', 'atmega2560'),
    ('arm', 'Cortex-M0'),
    ('arm', 'Cortex-M4F'),
], columns=['platform', 'cpu'])

results = pandas.concat([run_experiment(model, platform=row.platform, mcu=row.cpu) for idx, row in platforms.iterrows()])
print(results)
WARNING: Compiler toolchain for platform 'avr' not found. Loading cached results
WARNING: Compiler toolchain for platform 'arm' not found. Loading cached results
WARNING: Compiler toolchain for platform 'arm' not found. Loading cached results
  platform         cpu     dtype  flash   ram
0      avr  atmega2560  loadable   4934  2472
1      avr  atmega2560     float   6944   240
2      avr  atmega2560   int32_t   6000   240
3      avr  atmega2560   int16_t   4496   120
4      avr  atmega2560    int8_t   2480    60
5      avr  atmega2560   uint8_t   2466    60
0      arm   Cortex-M0  loadable   5336   264
1      arm   Cortex-M0     float   4372   240
2      arm   Cortex-M0   int32_t   2380   240
3      arm   Cortex-M0   int16_t   2752   120
4      arm   Cortex-M0    int8_t   2600    60
5      arm   Cortex-M0   uint8_t   2244    60
0      arm  Cortex-M4F  loadable   3544   264
1      arm  Cortex-M4F     float   4444   240
2      arm  Cortex-M4F   int32_t   1880   240
3      arm  Cortex-M4F   int16_t   2080   120
4      arm  Cortex-M4F    int8_t   2080    60
5      arm  Cortex-M4F   uint8_t   1892    60

Plot results

There can be considerable reductions in program memory consumption by picking a suitable datatype for the platform.

def plot_results(results):
    results = results.reset_index()
    results['name'] = results.platform + '/' + results.cpu

    g = seaborn.catplot(data=results,
        kind='bar',
        y='flash',
        x='dtype',
        row='name',
        height=4,
        aspect=2,
    )
    fig = g.figure
    fig.suptitle("Model size vs feature datatype")

    return fig

fig = plot_results(results)
fig.savefig('example-trees-feature-quantization.png')
Model size vs feature datatype, name = avr/atmega2560, name = arm/Cortex-M0, name = arm/Cortex-M4F

Total running time of the script: (0 minutes 1.473 seconds)

Gallery generated by Sphinx-Gallery